Organic Compounds
Many chemical compounds in living organisms are known as organic compounds' which contain C, H and O. In the earlier chapter
we have seen that an organism is formed primarily from six elements: C, H, O, N, P, Ca. The study of organic compounds is
called organic chemistry.
(A) Carbohydrates
There are plenty of organic compounds present in nature. All living things contain basically four types of organic compounds.
Carbohydrates form the first category of organic compounds.
For metabolism the organism requires energy. This energy is provided primarily by carbohydrates. Carbohydrates are basically
composed of 3 elements, C, H, and O. The ratio of H to O is 2:1, as in a water molecule (H2O). There are types
of carbohydrates according to the complexity of the carbohydrate molecule. Carbohydrates and usually taste sweet to humans
are referred to as sugar. If a carbohydrate is made up from a single molecule it is called monosaccharide. When the
carbohydrate is made up of 2 sugar molecules linked together it is referred to as a disaccharide Carbohydrates which
have more than 3 molecules are called polysaccharides. The general formula to represent the carbohydrate is Cx(H2O)y.
Table I: Schematic Representation of Carbohydrates
1) Monosaccharides
They are the simplest soluble sugar. Depending on the number of carbon atoms present, monosaccharides are further classified
as:
a) trioses (3 carbons) C3H6O3 e.g. glyceraldehyde
b) pentoses (5 carbons) C5H10O5 e.g. ribose and deoxyribose
c) hexoses (6 carbons) C6H12O6 e.g. glucose
Glucose C6H12O6 is a basic form of fuel in all living things. It is soluble in blood plasma
and water and so it is transported by body fluids to all cells in the body. In cells it is metabolized and releases energy.
Glucose is also the main product of photosynthesis and also an initiating material for cellular respiration.
2) Disaccharides: These carbohydrates contain two monosaccharides linked together and accordingly they are known as:
(a) Disaccharide : contains two monosaccharides e.g. lactose, maltose, sucrose
Maltose ® Glucose + Glucose
Sucrose ® Glucose + Fructose
Lactose ® Glucose + Galactose
(b) trisaccharide: containing 3 monosaccharides. e.g. raffinose
(c) tetrasaccharide: containing 4 monosaccharide e.g stachyose
3) Polysaccharides
General formula n (C6H10O5)
These complex carbohydrates are formed by chains of at least ten monosaccharides.
They are of two types:
(a) Homoglycans: containing only one type of monosaccharide (e.g. glycogen, starch, cellulose, contain only glucose
molecules). Starch is a very important polysaccharide because it is formed through a chain of hundreds or thousands
of glucose units. Carbohydrates in plants are stored in the form of starches. Starch contained in energy rich food like rice,
corn, and potatoes form part of the staple diet of most people.
A second important polysaccharide is glycogen. Glycogen also contains thousands of glucose chains; the difference
from starch though is in its branching pattern. Glucose is stored in the human liver in the form of glycogen.
Another important polysaccharide is cellulose. Cellulose is used primarily as a structural carbohydrate. It is also
composed of glucose units, linked in a different orientation but the units cannot be released from one another except by a
few species of organisms. Wood is formed from cellulose. Even the cell wall of all plants is made up of cellulose. Cotton
and paper are also cellulose products.
(b) Heteroglucans: contain more than one type of monosaccharide linked together (e.g. mucilage, gum etc.)
4) Proteins and its derivatives
Proteins are the fundamental chemical compounds of the protoplasm indispensable for vital life processes. They are complex,
large molecules each containing thousands of atoms. proteins contain nitrogen in addition to carbon, hydrogen and oxygen;
they usually also contain phosphorus and sulfur. These compounds are polymers of unit structures called amino acids, represented
chemically as:
-NH2 is an amino group, - COOH is the carboxyl group, and R represents the variable chain forming different
amino acids. There are 20 different of amino acids. The amino acids differ depending on the nature of the R group. Examples
of amino acids are valine, alanine, glutamic acid, tyrosine and histidine.
Two molecules of amino acids are joined by the carboxyl group of one amino acid with the amino group of the other
by loss of one molecule of water. This process is called dehydration synthesis and the bond thus formed between two
molecules is referred to as the peptide or peptide bond.
There are 3 types of proteins namely :
(1) Simple proteins: like albumins and globulins formed by group of amino acids only.
(2) Derived proteins: like protease and peptones, which are hydrolytic cleavage products of complex proteins.
(3) Conjugated proteins: like nucleo proteins (Proteins + nucleic acid), lipoproteins (protein + lipid), or glycoproteins
(protein + carbohydrates) which are formed by the combination of proteins with some non-protein molecule. This non-protein
portion is called Prosthetic group.
All living things require protein for survival. In fact an organism is constructed by means of proteins. All living things
then, in any form - liquid, solid, or plasma - contain proteins. Protein is also seen as a supporting tissue with main tissue.
Bone, tendons, muscle, cartilage, ligaments are all formed of protein.
Enzymes are a specified class of proteins. Enzymes act as catalysts in chemical reactions of the body. They are not used
up by the reaction, rather they remain chemically unchanged and available to catalyze succeeding reactions.
Nucleotides And Nucleic Acid
Every organism reproduces within its life span. This is accomplished through cell divisions and is regulated by many kinds
of proteins. The information for synthesizing unique proteins is located in the nucleus of the cell. It is called the genetic
code, which is the "blue print" for producing specific sequences of the amino acids in proteins. Thus the genetic code
can regulate chemical reaction going on in the cell.
Man’s queries into the nature of cells did not end with its discovery of general structures. In an attempt to understand
the chemical make up and functional details of the cell he succeeded in discovering a substance called nucleic acid, made
up of long chains of nucleotide units.
(A) Nucleotide
It is the structural unit of nucleic acid. Each nucleotide is composed of:
(1)Pentose sugar
(2) Phosphate group
(3) One of four nitrogen bases attached to the pentose sugar. A nucleotide without a phosphate group is a nucleoside.
B) Nucleic acids
They are complex, large biomolecules formed of many units called nucleotides.
Nucleic acids are of two types :
(1) DNA - Deoxyribonucleic acid and, (2) RNA - Ribonucleic acid
The DNA of cells contains genetic information in a coded form, and is only present in the nucleus of the cells formed from
DNA, plus a few special organelles. RNA and is present in the cytoplasm and in the nucleus of the cell.
DNA and RNA differ from one another in their components. DNA contains the pentose sugar, deoxyribose, while RNA contains
ribose.
Lipids
Fats and their derivatives are collectively called lipids. Fats are compounds containing fatty acids and
glycerol. They are composed of carbon, hydrogen and oxygen, but less oxygen than that in carbohydrates. Fatty acids are long
chains of CH2 groups with terminal methyl and carboxyl groups with general formula CH3[CH2]n-COOH,
while glycerol molecule contains a chain of three carbon atoms and has a formula C3H6O3.
In the formation of fat, three molecules of fatty acids are combined with three-OH groups on one molecule of glycerol, with
removal of 3 molecules of water which is represented as follows :
There are mainly three types of lipids . The simple lipids, commonly known as fats and oils, the compound lipids
such as phospholipids and glycolipids which on hydrolysis yield not only alcohol and fatty acids but also other compounds
and derived lipids such as steroids which include cholesterol, Vitamin D, estrogen, testosterone, cortisol, etc. Lipids are
practically insoluble in water but are soluble in organic solvents like chloroform, ether and benzene.
Fats stored in cells are usually clear oil droplets called globules. Because fats do not dissolve in water,
animals store fat in large clear globules in the cells of adipose tissue. The enzyme lipase breaks down fats into fatty acids
and glycerol, which can be further broken down to produce energy.
INORGANIC COMPOUNDS
Acids and Bases or Alkalis
If a compound reacts with water and releases hydrogen ions (H+) ions then this compound is called an acid,
and is said to be acidic in nature. For example, when hydrogen sulphide is mixed with water, it releases hydrogen ions
and the solution becomes one of sulphuric acid. Other chemical compounds when dissolved in water attract hydrogen atoms. These
substances are called bases or alkalis. For example, when sodium hydroxide (NaOH) is mixed with water, sodium
hydroxide attracts hydrogen ions from H2O, and (OH-) ions remain. So these substances that remove (H+) from water
act as bases or alkalis.
Water
Water's Physical Properties
Water is unique in that it is the only natural substance that is found in all three states -- liquid, solid (ice), and
gas (steam) -- at the temperatures normally found on Earth. Earth's water is constantly interacting, changing, and